关键词: 教师资格证
扫码添加专属备考顾问
▪ 0元领取考点真题礼包
▪ 获取1对1备考指导
课题: 第六单元:多边形的面积—整理和复习 第 课时 总序第 个教案 | |
课型: 新授 编写时间: 年 月 日 执行时间: 年 月 日 | |
教学内容:教材P103整理和复习及练习二十三。 教学目标: 知识与技能:进一步理解并巩固平面图形面积的计算方法,并能正确运用公式进行面积的计算。掌握各种平面图形的面积公式之间的联系,使学生形成知识网络。 过程与方法:巩固利用分割、填补等方法求组合图形面积的方法。 情感、态度与价值观:通过对平面图形面积公式之间的关系的研究,强化学生转化的数学思想。 教学重点:理解平面图形面积计算公式之间的内在联系,完善知识结构体系。 教学难点:掌握“转化”的数学思想,建构知识网络。 教学方法:小组交流合作和独立思考相结合。 教学准备:多媒体。练习本、彩笔、尺子。 教学过程 一、复习引入 1.导入:想一想我们学过了哪些平面图形的面积?请同学们将它们的字母公式写出来。 2.我们应该复习哪些东西呢? 学生自由发言,说出各个图形的面积公式,并回顾本单元所学的知识。 二、师生互动,解决问题 1.回顾公式的推导过程。(出示教材第103页第1题。) (l)提问:这些平面图形的面积计算公式分别是怎样推导出来的呢?请在小组内交流下,并思考:这几个面积公式在推导的过程中分别用了什么方法? 学生小组交流讨论。 让学生选择一个图形的面积公式说一说是怎么推导出来的。 教师根据学生说的分别用多媒体展示。 (2)沟通公式间的联系,完善知识体系。 质疑:在小学阶段,我们为什么首先学习长方形的面积计算公式? 让学生说一说:正方形、平行四边形面积公式都是在长方形面积的基础上推导出来的,三角形、梯形的面积公式又是在平行四边形面积公式的基础上推导出来的。 引导:在推导图形的面积公式时将这些图形变化成我们以前学过的图形进行研究。 总结:转化是一种重要的数学思想。在这些面积公式的研究过程中用的就是转化的思想, (3)引导:这几种平面图形之间存在着内在的联系。让学生试着用图形表示出它们之间的联系。 2.出示教材第103页第2题。 想一想,我们在求组合图形的面积时,经常用到哪几种方法? 学生回忆交流:切割法和填补法。 让学生尝试做一做。在小组内交流做法,并说一说想出了几种方法。 三、拓展延伸 1.完成教材第104页“练习二十三”第1题。 让学生先说一说各种图形的面积计算公式,再说一说每种图形的面积。 学生独立完成。 2.完成教材第104页“练习二十三”第3题。 让学生思考要想求共需要多少块砖要先算什么?这是一个组合图形,它的面积应该怎样计算? 学生独立完成后交流汇报:要先算墙面。把它看成一个正方形和一个三角形的面积之和进行计算。 3.完成教材第104页“练习二十三”第4题。 先让学生说一说解题思路,再列式计算。 4.完成教材第105页“练习二十三”第7题。 先让学生说一说火箭分别是由哪些图形组成的,再算一算。 学生汇报:是由一个三角形、一个长方形和一个梯形组成的。 5.完成教材第105页“练习二十三”第8题。 学生独立数一数,然后估算方格图中不规则图形的面积,小组交流。 6.教材第103页思考题。 分析:七巧板是由5个三角形、1个平行四边形和一个正方形组合成的。其中三角形1和2的面积相等。三角形1和2各占了大正方形面积的四分之一,或者说三角形1和2面积的各正好是大正方形面积的一半。 解答: 12×12÷2÷2=36(cm2) (12÷2)×(12÷2÷2)÷2=9(cm2) (12÷2)×(12÷2)÷2=18(cm2) (12÷2)×(12÷2÷2)=18(cm2) 12×12÷2-9×2-18-18=18(cm2) 答:三角形1和2和面积是36cm2,三角形4和6的面积是9 cm2,三角形7的面积是18 cm2,平行四边形的面积是18 cm2,正方形的面积是18 cm2。 四、课堂小结 这节课你学会了哪些内容? 学生自由发言,全班交流汇报。 作业:教材第104~105页练习二十三第2、5、6、9 板书设计: 整理和复习 长方形:S=ab 平行四边形:S=ah 梯形:S=(a+b)h÷2 三角形:S=ah÷2 组合图形面积:填补法、切割法 |
批 注 |
教学(后记)反思: |
相关推荐:
手机登录确认
微信扫码下载
微信扫一扫,即可下载